

EPA's Newly Proposed Regulatory
Air Dispersion Models

- Regulatory Niche
- Developmental Approach
- Model Overview
- Technology Transfer
- R&D Needs

Regulatory Niche

AERMOD

- Replacement for ISC3
- Near-field impacts (within 50 km)
- Sources located in either simple or complex terrain
- Non-reactive pollutants
- Permitting and area-wide planning (SIP's)
- Air toxics sources (fenceline & long term exposure)

Model's Regulatory Niche (cont.)

CALPUFF

- Long Range Transport (beyond 50 km)
 - Impacts from new sources on National Parks: e.g., visibility impairment, acid deposition, etc.
 - Large modeling domains
- Complex Winds: Non-uniform wind field is a controlling feature of the analysis
- Multi-media risk assessment

Development Approach

AERMOD

- AERMIC Committee (voluntary): Both research & regulatory application interests represented from beginning
- Design criteria
 - Up-to-date science replacement for ISC
 - Simple essential physical processes
 - Robust in estimating (regulatory) design concentrations
 - Easily implemented primary users are the regulatory community
 - Can Evolve Easily accommodate modifications

Development Approach (cont.)

AERMOD (cont.)

- Two phased evaluation
 - Phase I: Development (5 data bases)
 - Phase II: Evaluation (5 data bases)
- Evaluation tests
 - Residual plots (C_p/C_o vs.x, z_i, u, etc.)
 - Quantile-Quantile (Q-Q) plots Compare ranked distributions
 - Cox-Tikvart (robust highest concentration)
- Met degradation analysis
- Sensitivity and consequence analyses

Development Approach (cont.)

CALPUFF

- Initial development Earth Tech under contract to CA
- Many subsequent contracts (variety of organizations)
 have added to its development
- Public Domain With each advance Earth Tech makes model available to the community at large
- Evaluations: (5 LRT & 3 Near-field data sets)
- Evaluation tests
 - Match cross-wind Conc. Dist. & arc max)
 - Q-Q plots
- Comparison w/ISC3

AERMOD Overview

- Contains all ISC features except deposition
- Steady-state plume model
 - Gaussian for the SBL & lateral CBL
 - pdf (bi-gaussian) for the vertical CBL
- Meteorology used by AERMOD
 - Profiles of wind, temperature & turbulence
 - Minimum needed to estimate profiles:
 - One NWS surface and upper-air site
 - surface roughness, Bowen ratio & Albedo
 - Will combine all additional observations with estimates to produce combined profiles
 - Vertical inhomogeneity is considered

AERMOD Overview (cont.)

All terrain model

• Considers the dividing steamline concept in determining the degree of influence on the plume at each receptor.

Dispersion

- Plume spread statistics are estimated from turbulence profiles
- Special treatment of dispersion for near-surface releases

AERMOD Overview (cont.)

- Convective Boundary Layer
 - Delayed mix lid reflection (residual buoyancy)
 - Plume penetration into stable layer & reentry
- Stable Boundary Layer
 - Vertical mixing is limited
 - Includes meander effects
- Urban nocturnal boundary layer
 - Modeled using:
 - Nighttime convective velocity scale
 - Nighttime mixing layer
 - Based on urban-rural temp difference

CALPUFF Overview

- Integrated Modeling System
 - Pre & post-processors
 - Geopysical data
 - Precipitation
 - Surface and upper air met
 - Visibility and deposition flux calculations
 - Diagnostic met model (CALMET)
 - Non-steady-state Lagrangian puff model (CALPUFF)

CALPUFF Overview (cont.)

Emissions

- Non-steady-state emissions
- Emission model for controlled burns

Dispersion

- 3 primary options: observed or estimated turb,
 PG, McElory-Pooler
- Overwater and coastal effects

Subgrid scale complex terrain

- Flow distortion & enhanced dispersion
- Sidewall interactions

CALPUFF Overview (cont.)

- Deposition dry & wet / gas and particle
- S & N chemistry highly parameterized using simple linear approximations
- Meteorology (CALMET)
 - Input:
 - Multiple surface, upper air & precip stations
 - Land use data
 - Can us prognostic results as psudo-soundings (MM5)
 - Produces 3D gridded fields of u,v,w, temp, turbulence
 & mixing heights

Technology Transfer

- Both models are available on EPA's Technology
 Transfer Network SCRAM site
 (http://www.epa.gov/ttn/scram/)
- Training Needs: regulatory community needs to be transitioned from PGT understanding of dispersion to current state-of-the-science.
- Training courses
 - CALPUFF provided by Earth Tech for fee
 - AERMOD provided by AERMIC as available

Development Needs

AERMOD

- Deposition
- Downwash
- Urban boundary layer improvements

CALPUFF

- Precip/non-precip cloud interations
- Aqueous phase chemistry module
- Terrain enhancement of precipitation
- Nested grid option